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Abstract

In this paper, we propose a unified panoptic segmentation net-
work (UPSNet) for tackling the newly proposed panoptic seg-
mentation task. On top of a single backbone residual network,
we first design a deformable convolution based semantic seg-
mentation head and a Mask R-CNN style instance segmentation
head which solve these two subtasks simultaneously. More im-
portantly, we introduce a parameter-free panoptic head which
solves the panoptic segmentation via pixel-wise classification.
It first leverages the logits from the previous two heads and
then innovatively expands the representation for enabling pre-
diction of an extra unknown class which helps better resolve
the conflicts between semantic and instance segmentation. Ad-
ditionally, it handles the challenge caused by the varying num-
ber of instances and permits back propagation to the bottom
modules in an end-to-end manner. Extensive experimental re-
sults on Cityscapes, COCO and our internal dataset demon-
strate that our UPSNet achieves state-of-the-art performance
with much faster inference. Code has been made available at:
https://github.com/uber-research/UPSNet.

1. Introduction

Relying on the advances in deep learning, computer vision
systems have been substantially improved, especially in tasks
such as semantic segmentation [40] and instance segmenta-
tion [15]. The former focuses on segmenting amorphous image
regions which share similar texture or material such as grass, sky
and road, whereas the latter focuses on segmenting countable ob-
jects such as people, bicycle and car. Since both tasks aim at
understanding the visual scene at the pixel level, a shared model
or representation could arguably be beneficial. However, the di-
chotomy of these two tasks lead to very different modeling strate-
gies despite the inherent connections between them. For exam-
ple, fully convolutional neural networks [26] are often adopted
for semantic segmentation while proposal based detectors [31]
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are frequently exploited for instance segmentation.

As an effort to leverage the possible complementariness of
these two tasks and push the segmentation systems further to-
wards real-world application, Kirillov et al. [17] unified them and
proposed the so-called panoptic segmentation task. It is interest-
ing to note that tasks with the same spirit have been studied un-
der various names before deep learning became popular. Notable
ones include image parsing [33], scene parsing [33] and holistic
scene understanding [36]. In panoptic segmentation, countable
objects (those that map to instance segmentation tasks well) are
called things whereas amorphous and uncountable regions (those
that map to semantic segmentation tasks better) are called stuff.
For any pixel, if it belongs to stuff, the goal of a panoptic segmen-
tation system is simply to predict its class label within the stuff
classes. Otherwise the system needs to decide which instance it
belongs to as well as which thing class it belongs to. The chal-
lenge of this task lies in the fact that the system has to give a
unique answer for each pixel.

In this paper, we propose a unified panoptic segmentation net-
work (UPSNet) to approach the panoptic segmentation problem
as stated above. Unlike previous methods [17, 19] which have
two separate branches designed for semantic and instance seg-
mentation individually, our model exploits a single network as
backbone to provide shared representations. We then design two
heads on top of the backbone for solving these tasks simulta-
neously. Our semantic head builds upon deformable convolu-
tion [9] and leverages multi-scale information from feature pyra-
mid networks (FPN) [22]. Our instance head follows the Mask
R-CNN [15] design and outputs mask segmentation, bounding
box and its associated class. As shown in experiments, these
two lightweight heads along with the single backbone provide
good semantic and instance segmentations which are compara-
ble to separate models. More importantly, we design a panoptic
head which predicts the final panoptic segmentation via pixel-
wise classification of which the number of classes per image
could vary. It exploits the logits from the above two heads and
adds a new channel of logits corresponding to an extra unknown
class. By doing so, it provides a better way of resolving the con-
flicts between semantic and instance segmentation. Moreover,
our parameter-free panoptic head is very lightweight and could



be used with various backbone networks. It facilitates end-to-end
training which is not the case for previous methods [17, 19]. To
verify the effectiveness of our UPSNet, we perform extensive ex-
periments on two public datasets: Cityscapes [6] and COCO [23].
Furthermore, we test it on our internal dataset which is similar in
spirit to Cityscapes (i.e., images are captured from ego-centric
driving scenarios) but with significantly larger (≈ 3×) size. Re-
sults on these three datasets manifest that our UPSNet achieves
state-of-the-art performances and enjoys much faster inference
compared to recent competitors.

2. Related Work
Semantic Segmentation: Semantic segmentation is one of

the fundamental computer vision tasks that has a long history.
Earlier work [11, 27] focused on introducing datasets for this
task and showed the importance of global context by demon-
strating the gains in bayesian frameworks, whether structured or
free-form. Recent semantic segmentation methods that exploit
deep convolutional feature extraction mainly approach this prob-
lem from either multi-scale feature aggregation [40, 26, 5, 14],
or end-to-end structured prediction [2, 41, 1, 25, 4] perspectives.
As context is crucial for semantic segmentation, one notable im-
provement to most convolutional models emerged from dilated
convolutions [37, 38] which allows for a larger receptive field
without the need of more free parameters. Pyramid scene pars-
ing network (PSPNet) [40] that uses dilated convolutions in its
backbone, and its faster variant [39] for real-time applications are
widely utilized in practical applications. Based on FPN and PSP-
Net, a multi-task framework is proposed in [35] and demonstrated
to be versatile in segmenting a wide range of visual concepts.

Instance Segmentation: Instance segmentation deals not
only with identifying the semantic class a pixel is associated with,
but also the specific object instance that it belongs to. Beginning
with the introduction of region-based CNN (R-CNN) [12], many
early deep learning approaches to instance segmentation attacked
the problem by casting the solution to instance segmentation as
a two stage approach where a number of segment proposals are
made, which is then followed by a voting between those propos-
als to choose the best [34, 7, 8, 13, 14, 30]. The common denom-
inator for these methods is that the segmentation comes before
classification, and are therefore slower. Li et al. [21] proposed a
fully convolutional instance-aware segmentation method, where
instance mask proposals [7] are married with fully convolutional
networks [26]. Most recently, Mask R-CNN [15] introduced a
joint approach to both mask prediction and recognition where one
of the two parallel heads are dedicated to each task.

Panoptic Segmentation: Instance segmentation methods that
focus on detection bounding box proposals, as mentioned above,
ignore the classes that are not well suited for detection, e.g., sky,
street. On the other hand, semantic segmentation does not pro-
vide instance boundaries for classes like pedestrian and bicycle
in a given image. Panoptic segmentation task, first coined by
Kirillov et al. [17] unifies these tasks and defines an ideal out-
put for thing classes as instance segmentations, as well as for

stuff classes as semantic segmentation. The baseline panoptic
segmentation method introduced in [17] processes the input in-
dependently for semantic segmentation via a PSPNet, and for
instance segmentation utilizing a Mask R-CNN [15], followed
by simple heuristic decisions to produce a single void, stuff, or
thing instance label per pixel. Recently, Li et al. [19] introduced
a weakly- and semi-supervised panoptic segmentation method
where they relieve some of the ground truth constraints by super-
vising thing classes using bounding boxes, and stuff classes by
utilizing image level tags. De Gaus et al. [10] uses a single fea-
ture extraction backbone for the pyramid semantic segmentation
head [40], and the instance segmentation head [15], followed by
heuristics for merging pixel level annotations, effectively intro-
ducing an end-to-end version of [17] due to the shared backbone
for the two task networks. Li et al. [20] propose the attention-
guided unified network (AUNet) which leverages proposal and
mask level attention to better segment the background. Similar
post-processing heuristics as in [17] are used to generate the fi-
nal panoptic segmentation. Li et al. [18] propose things and stuff
consistency network (TASCNet) which constructs a binary mask
predicting things vs. stuff for each pixel. An extra loss is added
to enforce the consistency between things and stuff prediction.

In contrast to most of these methods, we use a single back-
bone network to provide both semantic and instance segmenta-
tion results. More importantly, we develop a simple yet effective
panoptic head which helps accurately predict the instance and
class label.

3. Unified Panoptic Sementation Network

In this section, we first introduce our model and then explain
the implementation details. Following the convention of [17], we
divide the semantic class labels into stuff and thing. Specifically,
thing refers to the set of labels of instances (e.g. pedestrian, bi-
cycle), whereas stuff refers to the rest of the labels that represent
semantics without clear instance boundaries (e.g. street, sky). We
denote the number of stuff and thing classes as Nstuff and Nthing
respectively.

3.1. UPSNet Architecture

UPSNet consists of a shared convolutional feature extraction
backbone and multiple heads on top of it. Each head is a sub-
network which leverages the features from the backbone and
serves a specific design purpose that is explained in further de-
tail below. The overall model architecture is shown in Fig. 1.

Backbone: We adopt the original Mask R-CNN [15] backbone
as our convolutional feature extraction network. This backbone
exploits a deep residual network (ResNet) [16] with a feature
pyramid network (FPN) [22].

Instance Segmentation Head: The instance segmentation
head follows the Mask R-CNN design with a bounding box re-
gression output, a classification output, and a segmentation mask
output. The goal of the instance head is to produce instance
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Figure 1: Overall architecture of our UPSNet.

aware representations that could identify thing classes better. Ul-
timately these representations are passed to the panoptic head to
contribute to the logits for each instance.

Semantic Segmentation Head: The goal of the semantic seg-
mentation head is to segment all semantic classes without dis-
criminating instances. It could help improving instance segmen-
tation where it achieves good results of thing classes. Our se-
mantic head consists of a deformable convolution [9] based sub-
network which takes the multi-scale feature from FPN as in-
put. In particular, we use P2, P3, P4 and P5 feature maps of
FPN which contain 256 channels and are 1/4, 1/8, 1/16 and
1/32 of the original scale respectively. These feature maps first
go through the same deformable convolution network indepen-
dently and are subsequently upsampled to the 1/4 scale. We then
concatenate them and apply 1 × 1 convolutions with softmax to
predict the semantic class. The architecture is shown in Fig. 2.
As will be experimentally verified later, the deformable convo-
lution along with the multi-scale feature concatenation provide
semantic segmentation results as good as a separate model, e.g.,
a PSPNet adopted in [17]. Semantic segmentation head is as-
sociated with the regular pixel-wise cross entropy loss. To put
more emphasis on the foreground objects such as pedestrians, we
also incorporate a RoI loss. During training, we use the ground
truth bounding box of the instance to crop the logits map after the
1 × 1 convolution and then resize it to 28 × 28 following Mask
R-CNN. The RoI loss is then the cross entropy computed over
28 × 28 patch which amounts to penalizing more on the pixels
within instances for incorrect classification. As demonstrated in
the ablation study later, we empirically found that this RoI loss
helps improve the performance of panoptic segmentation without
harming the semantic segmentation.

Panoptic Segmentation Head: Given the semantic and in-
stance segmentation results from the above described two heads,
we combine their outputs (specifically per pixel logits) in the
panoptic segmentation head.

The logits from semantic head is denoted as X of which the
channel size, height and width are Nstuff + Nthing, H and W re-
spectively. X can then be divided along channel dimension into
two tensors Xstuff and Xthing which are logits corresponding to

stuff and thing classes. For any image, we determine the num-
ber of instances Ninst according to the number of ground truth
instances during training. During inference, we rely on a mask
pruning process to determine Ninst which is explained in Section
3.2. Nstuff is fixed since number of stuff classes is constant across
different images, whereas Ninst is not constant since the number
of instances per image can be different. The goal of our panoptic
segmentation head is to first produce a logit tensor Z which is of
size (Nstuff +Ninst)×H ×W and then uniquely determine both
the class and instance ID for each pixel.

We first assign Xstuff to the first Nstuff channels of Z to pro-
vide the logits for classifying stuffs. For any instance i, we have
its mask logits Yi from the instance segmentation head which
is of size 28 × 28. We also have its box Bi and class ID Ci.
During training Bi and Ci are ground truth box and class ID
whereas during inference they are predicted by Mask R-CNN.
Therefore, we can obtain another representation of i-th instance
from semantic head Xmaski by only taking the values inside box
Bi from the channel of Xthing corresponding to Ci. Xmaski is of
size H × W and its values outside box Bi are zero. We then
interpolate Yi back to the same scale as Xmaski via bilinear in-
terpolation and pad zero outside the box to achieve a compatible
shape with Xmaski , denoted as Ymaski . The final representation of
i-th instance is ZNstuff+i = Xmaski + Ymaski . Once we fill in Z
with representations of all instances, we perform a softmax along
the channel dimension to predict the pixel-wise class. In particu-
lar, if the maximum value falls into the first Nstuff channel, then it
belongs to one of stuff classes. Otherwise the index of the max-
imum value tells us the instance ID. The architecture is shown
in Fig. 3. During training, we generate the ground truth instance
ID following the order of the ground truth boxes we used to con-
struct the panoptic logits. The panoptic segmentation head is then
associated with the standard pixel-wise cross entropy loss.

During inference, once we predict the instance ID following
the above procedure, we still need to determine the class ID of
each instance. One can either use the class ID Cinst predicted by
Mask R-CNN or the one predicted by the semantic head Csem. As
shown later in the ablation study, we resort to a better heuristic
rule. Specifically, for any instance, we know which pixels corre-
spond to it, i.e., those of which the argmax of Z along channel
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Figure 2: Architecture of our semantic segmentation head.

dimension equals to its instance ID. Among these pixels, we first
check whether Cinst and Csem are consistent. If so, then we assign
the class ID as Cinst. Otherwise, we compute the mode of their
Csem, denoting as Ĉsem. If the frequency of the mode is larger
than 0.5 and Ĉsem belongs to stuff, then the predicted class ID is
Ĉsem. Otherwise, we assign the class ID as Cinst. In short, while
facing inconsistency, we trust the majority decision made by the
semantic head only if it prefers a stuff class. The justification of
such a conflict resolution heuristic is that semantic head typically
achieves very good segmentation results over stuff classes.

Unknown Prediction: In this section, we explain a novel
mechanism to classify a pixel as the unknown class instead of
making a wrong prediction. To motivate our design, we consider
a case where a pedestrian is instead predicted as a bicycle. Since
the prediction missed the pedestrian, the false negative (FN) value
of pedestrian class will be increased by 1. On the other hand, pre-
dicting it as a bicycle will be increasing the false positive (FP) of
bicycle class also by 1. Recall that, the panoptic quality (PQ) [17]
metric for panoptic segmentation is defined as,

PQ =


(p,g)∈TP IoU(p, g)

|TP|  
SQ

|TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|

  
RQ

,

which consist of two parts: recognition quality (RQ) and seman-
tic quality (SQ). It is clear that increasing either FN or FP de-
grades this measurement. This phenomena extends to wrong pre-
dictions of the stuff classes as well. Therefore, if a wrong predic-
tion is inevitable, predicting such pixel as unknown is preferred
since it will increase FN of one class by 1 without affecting FP
of the other class.

To alleviate the issue, we compute the logits of the extra un-
known class as Zunknown = max (Xthing) − max (Xmask) where
Xmask is the concatenation of Xmaski of all masks along channel
dimension and of shape Ninst ×H ×W . The maximum is taken
along the channel dimension. The rationale behind this is that for
any pixel if the maximum of Xthing is larger than the maximum of
Xmask, then it is highly likely that we are missing some instances
(FN). The construction of the logits is shown in Fig. 3. To gener-
ate the ground truth for the unknown class, we randomly sample
30% ground truth masks and set them as unknown during train-
ing. In evaluating the metric, any pixel belonging to unknown
is ignored, i.e., setting to void which will not contribute to the
results.
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Figure 3: Architecture of our panoptic segmentation head.

3.2. Implementation Details

In this section, we explain the implementation details of UP-
SNet. We follow most of settings and hyper-parameters of Mask
R-CNN which will be introduced in the supplementary material.
Hereafter, we only explain those which are different.

Training: We implement our model in PyTorch [28] and
train it with 16 GPUs using the distributed training framework
Horovod [32]. Images are preprocessed following [15]. Each
mini-batch has 1 image per GPU. As mentioned, we use ground
truth box, mask and class label to construct the logits of panop-
tic head during training. Our region proposal network (RPN)
is trained end-to-end with the backbone whereas it was trained
separately in [15]. Due to the high resolution of images, e.g.,
1024×2048 in Cityscapes, logits from semantic head and panop-
tic head are downsampled to 1/4 of the original resolution. Al-
though we do not fine-tune batch normalization (BN) layers
within the backbone for simplicity, we still achieve comparable
results with the state-of-the-art semantic segmentation networks
like PSPNet. Based on common practice in semantic [4, 40] and
instance segmentation [29, 24], we expect the performance to be
further improved with BN layers fine-tuned. Our UPSNet con-
tains 8 loss functions in total: semantic segmentation head (whole
image and RoI based pixel-wise classification losses), panoptic
segmentation head (whole image based pixel-wise classification
loss), RPN (box classification, box regression) and instance seg-
mentation head (box classification, box regression and mask seg-
mentation). Different weighting schemes on these multi-task loss
functions could lead to very different training results. As shown
in the ablation study, we found the loss balance strategy, i.e., as-
suring the scales of all losses are roughly on the same order of
magnitude, works well in practice.

Inference: During inference, once we obtained output boxes,
masks and predicted class labels from the instance segmentation
head, we apply a mask pruning process to determine which mask
will be used for constructing the panoptic logits. In particular, we
first perform the class-agnostic non-maximum suppression with
the box IoU threshold as 0.5 to filter out some overlapping boxes.
Then we sort the predicted class probabilities of the remaining
boxes and keep those whose probability are larger than 0.6. For



Models PQ SQ RQ PQTh PQSt mIoU AP

JSIS-Net [10] 26.9 72.4 35.7 29.3 23.3 - -
RN50-MR-CNN 38.6 76.4 47.5 46.2 27.1 - -
MR-CNN-PSP 41.8 78.4 51.3 47.8 32.8 53.9 34.2

Ours 42.5 78.0 52.4 48.5 33.4 54.3 34.3

Multi-scale PQ SQ RQ PQTh PQSt mIoU AP

MR-CNN-PSP-M 42.2 78.5 51.7 47.8 33.8 55.3 34.2
Ours-M 43.2 79.2 52.9 49.1 34.1 55.8 34.3

Table 1: Panoptic segmentation results on COCO. Superscripts
Th and St stand for thing and stuff. ‘-‘ means inapplicable.

each class, we create a canvas which is of the same size as the im-
age. Then we interpolate masks of that class to the image scale
and paste them onto the corresponding canvas one by one follow-
ing the decreasing order of the probability. Each time we copy
a mask, if the intersection between the current mask and those
already existed over the size of the current mask is larger than
a threshold, we discard this mask. Otherwise we copy the non-
intersecting part onto the canvas. The threshold of this intersec-
tion over itself is set to 0.3 in our experiments. Logits from the
semantic segmentation head and panoptic segmentation head are
of the original scale of the input image during inference.

4. Experiments
In this section, we present the experimental results on

COCO [23], Cityscapes [6] and our internal dataset.
COCO We follow the setup of COCO 2018 panoptic segmen-

tation task which consists of 80 and 53 classes for thing and stuff
respectively. We use train2017 and val2017 subsets which con-
tain approximately 118k training images and 5k validation im-
ages.

Cityscapes Cityscapes has 5000 images of ego-centric driving
scenarios in urban settings which are split into 2975, 500 and
1525 for training, validation and testing respectively. It consists
of 8 and 11 classes for thing and stuff.

Our Dataset We also use an internal dataset which is similar
to Cityscapes and consists of 10235 training, 1139 validation and
1186 test images of ego-centric driving scenarios. Our dataset
consists of 10 and 17 classes for thing (e.g., car, bus) and stuff
(e.g., building, road) respectively.

Experimental Setup For all datasets, we report results on the
validation set. To evaluate the performance, we adopt panop-
tic quality (PQ), recognition quality (RQ) and semantic quality
(SQ) [17] as the metrics. We also report average precision (AP)
of mask prediction, mean IoU of semantic segmentation on both
stuff and thing and the inference run-time for comparison. At
last, we show results of ablation study on various design compo-
nents of our model. Full results with all model variants are shown
in the supplementary material.

We set the learning rate and weight decay as 0.02 and 0.0001
for all datasets. For COCO, we train for 90K iterations and decay
the learning rate by a factor of 10 at 60K and 80K iterations.

For Cityscapes, we train for 12K iterations and apply the same
learning rate decay at 9K iterations. For our dataset, we train
for 36K iterations and apply the same learning rate decay at 24K
and 32K iterations. Loss weights of semantic head are 0.2, 1.0
and 1.0 on COCO, Cityscapes and ours respectively. RoI loss
weights are one fifth of those of semantic head. Loss weights of
panoptic head are 0.1, 0.5 and 0.3 on COCO, Cityscapes and ours
respectively. All other loss weights are set to 1.0.

We mainly compare with the combined method used in [17].
For a fair comparison, we adopt the model which uses a Mask
R-CNN with a ResNet-50-FPN and a PSPNet with a ResNet-
50 as the backbone and apply the combine heuristics to compute
the panoptic segmentation. We denote our implementation of the
combined method as ‘MR-CNN-PSP’ and its multi-scale testing
version as ‘MR-CNN-PSP-M’. Unless specified otherwise, the
combined method hereafter refers to ‘MR-CNN-PSP’. For PSP-
Net, we use ‘poly’ learning rate schedule as in [3] and train 220K,
18K and 76K on COCO, Cityscapes and our dataset with mini-
batch size 16. We test all available models with the multi-scale
testing. Specifically, we average the multi-scale logits of PSPNet
for the combined method and the ones of semantic segmentation
head for our UPSNet. For simplicity, we just use single scale test-
ing on Mask R-CNN of the combined method and our instance
segmentation head. During evaluation, due to the sensitivity of
PQ with respect to RQ, we predict all stuff segments of which
the areas are smaller than a threshold as unknown. The thresh-
olds on COCO, Cityscapes and our dataset are 4096, 2048 and
2048 respectively. To be fair, we apply this area thresholding to
all methods.

4.1. COCO

We compare with several recent published methods including
JSIS-Net [10], RN50-MR-CNN 1 and the combined method [17]
on COCO. Since authors in [17] do not report results on COCO,
we use our MR-CNN-PSP model as the alternative to do the ex-
periments. JSIS-Net uses a ResNet-50 wheres RN50-MR-CNN
uses two separate ResNet-50-FPNs as the backbone. Our UP-
SNet adopts a ResNet-50-FPN as the backbone. In order to bet-
ter leverage context information, we use a global average pooling
over the feature map of the last layer in the 5-th stage of ResNet
(‘res5’), reduce its dimension to 256 and add back to FPN be-
fore producing P5 feature map. Table 1 shows the results of all
metrics. The mIoU metric is computed over the 133 classes of
stuff and thing in the COCO 2018 panoptic segmentation task
which is different from previous 172 classes of COCO-Stuff. We
are among the first to evaluate mIoU on this 133-class subset.
From the table, we can see that our UPSNet achieves better per-
formance in all metrics except the SQ. It is typically the case
that the an increase in RQ leads to the slight decrease of SQ
since we include more TP segments which could have possibly
lower IoU. Note that even with multi-scale testing, MR-CNN-
PSP is still worse than ours on PQ. Moreover, from the mIoU
column, we can see that the performance of our semantic head

1https://competitions.codalab.org/competitions/19507#results



Models backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Megvii (Face++) ensemble model 53.2 83.2 62.9 62.2 85.5 72.5 39.5 79.7 48.5
Caribbean ensemble model 46.8 80.5 57.1 54.3 81.8 65.9 35.5 78.5 43.8
PKU 360 ResNeXt-152-FPN 46.3 79.6 56.1 58.6 83.7 69.6 27.6 73.6 35.6

JSIS-Net [10] ResNet-50 27.2 71.9 35.9 29.6 71.6 39.4 23.4 72.3 30.6
AUNet [20] ResNeXt-152-FPN 46.5 81.0 56.1 55.9 83.7 66.3 32.5 77.0 40.7

Ours ResNet-101-FPN 46.6 80.5 56.9 53.2 81.5 64.6 36.7 78.9 45.3
Table 2: Panoptic segmentation results on MS-COCO 2018 test-dev. The top 3 rows contain results of top 3 models taken from the
official leadboard.

Models PQ SQ RQ PQTh PQSt mIoU AP

Li et al. [19] 53.8 - - 42.5 62.1 71.6 28.6
MR-CNN-PSP 58.0 79.2 71.8 52.3 62.2 75.2 32.8
TASCNet [18] 55.9 - - 50.5 59.8 - -

Ours 59.3 79.7 73.0 54.6 62.7 75.2 33.3

TASCNet-COCO [18] 59.2 - - 56.0 61.5 - -
Ours-COCO 60.5 80.9 73.5 57.0 63.0 77.8 37.8

Multi-scale PQ SQ RQ PQTh PQSt mIoU AP

Kirillov et al. [17] 61.2 80.9 74.4 54.0 66.4 80.9 36.4
MR-CNN-PSP-M 59.2 79.7 73.0 52.3 64.2 76.9 32.8

Ours-M 60.1 80.3 73.5 55.0 63.7 76.8 33.3
Ours-101-M-COCO 61.8 81.3 74.8 57.6 64.8 79.2 39.0

Table 3: Panoptic segmentation results on Cityscapes. ’-COCO’
means the model is pretrained on COCO. ‘-101‘ means the model
uses ResNet-101 as the backbone. Unless specified, all models
use ResNet-50 as the backbone and are pretrained on ImageNet.

is even better than a separate PSPNet which verifies its effective-
ness. With multi-scale testing, both MR-CNN-PSP and UPSNet
are improved and ours is still better. We also add the compar-
isons on the test-dev of MS-COCO 2018 in Table 2. Although we
just use ResNet-101 as the backbone, we achieve slightly better
results compared to the recent AUNet [20] which uses ResNeXt-
152. We also list the top three results on the leadboard which uses
ensemble and other tricks. It is clear from the table that we are
on par with the second best model without using any such tricks.
In terms of the model size, RN50-MR-CNN, MR-CNN-PSP and
UPSNet consists of 71.2M, 91.6M and 46.1M parameters respec-
tively. Therefore, our model is significantly lighter. We show vi-
sual examples of panoptic segmentation on this dataset in the first
two rows of Fig. 4. From the 1-st row of the figure, we can see
that the combined method completely ignores the cake and other
objects on the table whereas ours successfully segments them out.
This is due to the inherent limitations of the combine heuristic
which first pastes the high confidence segment, i.e., table, and
then ignores all highly overlapped objects thereafter.

4.2. Cityscapes

We compare our model on Cityscapes with Li et al. [19], the
combined method [17] and TASCNet [18]. Note that the method
in [19] uses a ResNet-101 as the backbone whereas all other re-

Models PQ SQ RQ PQTh PQSt mIoU AP

MR-CNN-PSP 45.5 77.1 57.6 40.1 48.7 70.5 29.6
Ours 47.1 77.1 59.4 43.8 49.0 70.8 30.4

Table 4: Panoptic segmentation results on our dataset.

ported methods use ResNet-50 within their backbones. We use 2
deformable convolution layers for the semantic head. The results
are reported in Table 3. It is clear from the table that both our
UPSNet and MR-CNN-PSP significantly outperform the method
in [19], especially on PQTh. This may possibly be caused by the
fact that their CRF based instance subnetwork performs worse
compared to Mask R-CNN on instance segmentation. Under the
same single scale testing, our model achieves better performance
than the combined method. Although multi-scale testing signifi-
cantly improves both the combined method and UPSNet, ours is
still slightly better. Results reported in [17] are different from
the ones of our MR-CNN-PSP-M since: 1) they use ResNet-
101 as the backbone for PSPNet; 2) they pre-train Mask R-CNN
on COCO and PSPNet on extra coarsely labeled data. We also
have a model variant, denoting as ‘Ours-101-M’, which adopts
ResNet-101 as the backbone and pre-trains on COCO. As you can
see, it outperforms the reported metrics of the combined method.
We show the visual examples of panoptic segmentation on this
dataset in the 3-rd and 4-th rows of Fig. 4. From the 3-rd row
of the figure, we can see that the combined method tends to pro-
duce large black area, i.e., unknown, whenever the instance and
semantic segmentation conflicts with each other. In contrast, our
UPSNet resolves the conflicts better. Moreover, it is interesting to
note that some unknown prediction of our model has the vertical
or horizontal boundaries. This is caused by the fact that instance
head predicts nothing whereas semantic head predicts something
for these out-of-box areas. The logits of unknown class will then
stand out by design to avoid contributing to both FP and FN as
described in section 3.1.

4.3. Our Dataset

Last but not least, we compare our model on our own dataset
with the combined method [17]. All reported methods use
ResNet-50 within their backbones. We use 2 deformable convo-
lution layers for the semantic head. The results are reported in Ta-
ble 4. We can observe that similar to COCO, our model performs



Model COCO Cityscapes Our Dataset

Img. Size 800× 1300 1024× 2048 1200× 1920

MR-CNN-PSP
188

(186 + 2)
1105

(583 + 522)
1016

(598 + 418)
Ours 171 236 264

Speedup 10% × 368% × 285% ×
Table 5: Run time (ms) comparison. Note the bracket below the
MR-CNN-PSP results contains their breakdown into the network
inference (left) and the combine heurisitc (right).

significantly better than the combined method on all metrics ex-
cept SQ. We show the visual examples of panoptic segmentation
on this dataset in the last two rows of Fig. 4. From the examples,
similar observations as COCO and Cityscapes are found.

4.4. Run Time Comparison

We compare the run time of inference on all three datasets in
Table 5. We use a single NVIDIA GeForce GTX 1080 Ti GPU
and an Intel Xeon E5-2687W CPU (3.00GHz). All entries are
averaged over 100 runs on the same image with single scale test.
For COCO, the PSPNet within the combined method uses the
original scale. We also list the image size on each dataset. It
is clearly seen in the table that as the image size increases, our
UPSNet is significantly faster in run time. For example, the com-
bined method takes about 3× time than ours.

4.5. Ablation Study

We perform extensive ablation studies on COCO dataset to
verify our design choices as listed in Table 6. Empty cells in
the table indicate the corresponding component is not used. All
evaluation metrics are computed over the output of the panoptic
head on the validation set.

Panoptic Head: Since the inference of our panoptic head is
applicable as long as we have outputs from both semantic and
instance segmentation heads, we can first train these two heads
simultaneously and then directly evaluate the panoptic head. We
compare the results with the ones obtained by training all three
heads. By doing so, we can verify the gain of training the panop-
tic head over treating it as a post processing procedure. From the
first two rows of Table 6, we can see that training the panoptic
head does improve the PQ metric.

Instance Class Assignment: Here, we focus on different al-
ternatives of assigning instance class. We compare our heuristic
as described in section 3.1 with the one which only trusts the pre-
dicted class given by the instance segmentation head. As you can
see from the 2-nd and 3-rd rows of the Table 6, our instance class
assignment is better.

Loss Balance: We investigate the weighting scheme of loss
functions. Recall that without the proposed RoI loss, our UPSNet
contains 7 loss functions. In order to weight them, we follow
the principle of loss balance, i.e., making sure their values are
roughly on the same order of magnitude. In particular, with loss

Pano.
Our
ICA

Loss
Bal.

RoI
Loss Unk.

GT
Box

GT
ICA

GT
Seg. PQ PQTh PQSt

41.2 47.6 31.6
 41.6 47.6 32.5
  41.7 47.7 32.8
   42.3 48.4 33.1
    42.3 48.3 33.2
     42.5 48.5 33.4
      46.7 55.3 33.6
     53.0 64.6 35.5
      72.0 58.6 92.3

Table 6: Ablation study on COCO dataset. ‘Pano.’, ‘Loss Bal.’,
‘Unk.’ and ‘ICA’ stand for training with panoptic loss, loss bal-
ance, unknown prediction and instance class assignment respec-
tively.

balance, we set the weights of semantic and panoptic losses as
0.2 and 0.1 and the rest ones as 1.0. Without loss balance, we
set the weights of both semantic and panoptic losses as 0.1 and
the rest ones as 1.0. The 3-rd and 4-th rows of Table 6 show that
introducing the loss balance improves the performance.

RoI Loss & Unknown Prediction: Here, we investigate the
effectiveness of our RoI loss function over the semantic head and
the unknown prediction. From 4-th and 5-th rows of Table 6, one
can conclude that adding such a new loss function does slightly
boost the PQSt. From 5-th and 6-th rows of Table 6, along with
the RoI loss, predicting unknown class improves the metrics sig-
nificantly.

ORACLE Results: We also explore the room for improvement
of the current system by replacing some inference results with the
ground truth (GT) ones. Specifically, we study the box, instance
class assignment and semantic segmentation results which cor-
respond to GT Box, GT ICA and GT Seg. columns in Table 6.
It is clear from the table that using GT boxes along with our pre-
dicted class probabilities improves PQ which indicates that better
region proposals are required to achieve higher recall. On top of
the GT boxes, using the GT class assignment greatly improves
the PQ, e.g., ≈ +7.0. The imperfect PQTh indicates that our
mask segmentation is not good enough. Moreover, using the GT
semantic segmentation gives the largest gain of PQ, i.e., +29.5,
which highlights the importance of improving semantic segmen-
tation. PQSt is imperfect since we resize images during inference
which causes the misalignment with labels. It is worth noticing
that increasing semantic segmentation also boosts PQTh for 10
points. This is because our model leverages semantic segments
while producing instance segments. However, it is not the case
for the combined method as its predicted instance segments only
relies on the instance segmentation network.

5. Conclusion

In this paper, we proposed the UPSNet which provides a uni-
fied framework for panoptic segmentation. It exploits a single



Image Ground truth Combined method [17] Ours
Figure 4: Visual examples of panoptic segmentation. 1-st and 2-nd rows are from COCO. 3-rd and 4-th rows are from Cityscapes. 5-th
and 6-th rows are from our internal dataset.

backbone network and two lightweight heads to predict seman-
tic and instance segmentation in one shot. More importantly, our
parameter-free panoptic head leverages the logits from the above
two heads and has the flexibility to predict an extra unknown
class. It handles the varying number of classes per image and
enables back propagation for the bottom representation learning.
Empirical results on three large datasets show that our UPSNet
achieves state-of-the-art performance with significantly faster in-

ference compared to other methods. In the future, we would like
to explore more powerful backbone networks and smarter param-
eterization of panoptic head.
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